Tuesday 25 July 2017

Was Ist Gleitender Mittlerer Filter

Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der vorherigen 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte bis zu den tatsächlichen Datenpunkten. Der gleitende Durchschnitt als Filter Der gleitende Mittelwert wird häufig für die Glättung von Daten in Gegenwart von Rauschen verwendet. Der einfache gleitende Durchschnitt wird nicht immer als der Finite Impulse Response (FIR) - Filter erkannt, der es ist, während er tatsächlich einer der gebräuchlichsten Filter in der Signalverarbeitung ist. Wenn man sie als Filter betrachtet, kann man sie beispielsweise mit gefensterten Filtern vergleichen (siehe Artikel zu Tiefpaß-, Hochpass - und Bandpass - und Bandsperrfiltern für Beispiele). Der Hauptunterschied zu diesen Filtern besteht darin, daß der gleitende Durchschnitt für Signale geeignet ist, für die die Nutzinformation im Zeitbereich enthalten ist. Von denen Glättungsmessungen durch Mittelung ein Paradebeispiel sind. Window-sinc-Filter, auf der anderen Seite, sind starke Künstler im Frequenzbereich. Mit Ausgleich in der Audioverarbeitung als typisches Beispiel. Es gibt einen detaillierteren Vergleich beider Arten von Filtern in Time Domain vs. Frequency Domain Performance von Filtern. Wenn Sie Daten haben, für die sowohl die Zeit als auch die Frequenzdomäne wichtig sind, dann möchten Sie vielleicht einen Blick auf Variationen auf den Moving Average werfen. Die eine Anzahl gewichteter Versionen des gleitenden Durchschnitts zeigt, die besser sind. Der gleitende Durchschnitt der Länge (N) kann so definiert werden, wie er üblicherweise implementiert ist, wobei der aktuelle Ausgabeabtastwert der Durchschnitt der vorhergehenden (N) Abtastwerte ist. Als Filter betrachtet, führt der gleitende Durchschnitt eine Faltung der Eingangsfolge (xn) mit einem rechteckigen Puls der Länge (N) und der Höhe (1N) durch (um den Bereich des Pulses und damit die Verstärkung des Filters zu erzeugen , eins ). In der Praxis ist es am besten, (N) ungerade zu nehmen. Obwohl ein gleitender Durchschnitt auch unter Verwendung einer geraden Anzahl von Abtastwerten berechnet werden kann, hat die Verwendung eines ungeradzahligen Wertes für (N) den Vorteil, daß die Verzögerung des Filters eine ganzzahlige Anzahl von Abtastwerten ist, da die Verzögerung eines Filters mit (N) Proben genau ((N-1) 2). Der gleitende Durchschnitt kann dann exakt mit den ursprünglichen Daten ausgerichtet werden, indem er um eine ganze Zahl von Abtastwerten verschoben wird. Zeitdomäne Da der gleitende Durchschnitt eine Faltung mit einem rechteckigen Puls ist, ist sein Frequenzgang eine sinc-Funktion. Dies macht es ähnlich dem Dual des Fenstersynchronfilters, da es sich hierbei um eine Faltung mit einem Sinc-Puls handelt, der zu einem rechteckigen Frequenzgang führt. Es ist diese sinc Frequenzantwort, die den gleitenden Durchschnitt ein schlechter Darsteller im Frequenzbereich macht. Allerdings führt es sehr gut im Zeitbereich. Daher ist es perfekt, um Daten zu löschen, um Rauschen zu entfernen, während gleichzeitig eine schnelle Sprungantwort beibehalten wird (1). Für das typische Additiv-Weiß-Gauß-Rauschen (AWGN), das oft angenommen wird, bewirkt die Mittelung (N) - Proben, dass das SNR um einen Faktor (sqrt N) erhöht wird. Da das Rauschen für die einzelnen Proben unkorreliert ist, gibt es keinen Grund, jede Probe unterschiedlich zu behandeln. Daher wird der gleitende Durchschnitt, der jeder Probe das gleiche Gewicht gibt, die maximale Menge an Rauschen für eine gegebene Sprungantwortschärfe beseitigen. Implementierung Da es sich um ein FIR-Filter handelt, kann der gleitende Durchschnitt durch Faltung implementiert werden. Es hat dann die gleiche Effizienz (oder das Fehlen davon) wie jedes andere FIR-Filter. Sie kann aber auch rekursiv und effizient umgesetzt werden. Es folgt unmittelbar aus der Definition, daß diese Formel das Ergebnis der Ausdrücke für (yn) und (yn1) ist, dh, daß die Veränderung zwischen (yn1) und (yn) ein zusätzlicher Term (xn1N) ist Das Ende, während der Term (xn-N1N) von Anfang entfernt wird. In praktischen Anwendungen ist es oft möglich, die Division durch (N) für jeden Term auszulassen, indem die resultierende Verstärkung von (N) an einer anderen Stelle kompensiert wird. Diese rekursive Umsetzung wird viel schneller als Faltung. Jeder neue Wert von (y) kann mit nur zwei Additionen anstelle der (N) Additionen berechnet werden, die für eine einfache Implementierung der Definition erforderlich wären. Eine Sache, mit der Sie nach einer rekursiven Implementierung Ausschau halten, ist, dass Rundungsfehler akkumulieren. Dies kann ein Problem für Ihre Anwendung sein oder auch nicht, aber es bedeutet auch, dass diese rekursive Implementierung tatsächlich mit einer Integer-Implementierung besser funktionieren wird als mit Gleitkommazahlen. Dies ist sehr ungewöhnlich, da eine Gleitkomma-Implementierung gewöhnlich einfacher ist. Der Schluss davon muss sein, dass Sie die Nützlichkeit des einfachen gleitenden Durchschnittsfilters in Signalverarbeitungsanwendungen nie unterschätzen sollten. Filter Design Tool Dieser Artikel wird mit einem Filter Design Tool ergänzt. Experimentiere mit verschiedenen Werten für (N) und visualisiere die resultierenden Filter. Versuchen Sie es jetztMean Filter Gemeinsame Namen: Mittleres Filtern, Glättung, Mittelwertbildung, Kastenfilterung Kurzbeschreibung Die mittlere Filterung ist eine einfache, intuitive und einfach zu implementierende Methode zum Glätten von Bildern, d. H. Zur Verringerung der Intensitätsänderung zwischen einem Pixel und dem nächsten. Es wird oft verwendet, um Rauschen in Bildern zu reduzieren. Wie es funktioniert Die Idee der mittleren Filterung ist einfach, jeden Pixelwert in einem Bild durch den mittleren (durchschnittlichen) Wert seiner Nachbarn, einschließlich sich selbst, zu ersetzen. Dies hat die Wirkung, Pixelwerte zu eliminieren, die für ihre Umgebung nicht repräsentativ sind. Eine mittlere Filterung wird üblicherweise als ein Faltungsfilter angesehen. Wie andere Windungen basiert es auf einem Kernel. Die die Form und Größe der Nachbarschaft darstellt, die bei der Berechnung des Mittelwerts abgetastet werden soll. Oft wird ein 32153-Quadratkern verwendet, wie in Fig. 1 gezeigt, obwohl grßere Körner (z. B. 52155 Quadrate) für eine stärkere Glättung verwendet werden können. (Man beachte, dass ein kleiner Kernel mehr als einmal angewendet werden kann, um einen ähnlichen, aber nicht identischen Effekt wie einen einzigen Durchgang mit einem großen Kernel zu erzeugen.) Abbildung 1 32153 Mittelwertbildung Kernel häufig verwendet bei der mittleren Filterung Berechnung der direkten Konvolution eines Bildes mit Führt dieser Kernel den mittleren Filterprozess durch. Richtlinien für die Verwendung Mittlere Filterung wird am häufigsten als eine einfache Methode zur Reduzierung von Rauschen in einem Bild verwendet. Wir veranschaulichen den Filter, der zeigt, dass das Original durch Gaußsches Rauschen mit einem Mittelwert von Null und einer Standardabweichung () von 8 beschädigt ist, die Wirkung des Anwendens eines 32153-Mittelfilters. Beachten Sie, dass das Rauschen weniger offensichtlich ist, aber das Bild wurde weich gemacht. Wenn wir die Größe des mittleren Filters auf 52155 erhöhen, erhalten wir ein Bild mit weniger Rauschen und weniger hochfrequenten Details, wie in Dasselbe Bild, das stärker durch Gaußsche Rauschen (mit einem Mittelwert von null und a von 13) beschädigt ist, gezeigt ist In ist das Ergebnis einer mittleren Filterung mit einem 32153-Kernel. Eine noch anspruchsvollere Aufgabe wird durch die Wirkung der Glättung des verrauschten Bildes mit einem 32153-Mittelfilter bereitgestellt. Da die Schußrauschenpixelwerte oft sehr verschieden von den umgebenden Werten sind, neigen sie dazu, den durch den mittleren Filter berechneten Pixelmittelwert deutlich zu verzerren. Die Verwendung eines 52155-Filters bewirkt, dass dieses Ergebnis keine signifikante Verbesserung der Rauschunterdrückung ist, und außerdem ist das Bild nun sehr verschwommen. Diese Beispiele veranschaulichen die zwei Hauptprobleme bei der mittleren Filterung, die sind: Ein einzelnes Pixel mit einem sehr nicht repräsentativen Wert kann den Mittelwert aller Pixel in seiner Nachbarschaft signifikant beeinflussen. Wenn die Filterumgebung eine Kante überspannt, interpoliert der Filter neue Werte für Pixel auf der Kante und verschwimmt diese Kante. Dies kann ein Problem sein, wenn scharfe Kanten in der Ausgabe erforderlich sind. Beide Probleme werden durch den Medianfilter angegangen. Was oft ein besserer Filter zur Reduzierung von Rauschen ist als der mittlere Filter, aber es dauert länger, um zu berechnen. Im allgemeinen wirkt das mittlere Filter als Tiefpaßfilter und reduziert somit die im Bild vorhandenen räumlichen Intensitätsableitungen. Wir haben diesen Effekt bereits als Erweichung der Gesichtszüge im obigen Beispiel gesehen. Betrachten wir nun das Bild, das eine Szene darstellt, die einen breiteren Bereich von verschiedenen Raumfrequenzen enthält. Nach einmaligem Glätten mit einem 32153-Mittelfilter erhalten wir Beachten Sie, dass die tiefe räumliche Frequenzinformation im Hintergrund nicht signifikant durch Filtern beeinflusst wurde, aber die (einst klaren) Kanten des Vordergrundsubjekts merklich geglättet worden sind. Nach dem Filtrieren mit einem 72157-Filter erhalten wir eine noch dramatischere Darstellung dieses Phänomens im Vergleich dieses Ergebnisses mit dem, das erhalten wird, indem man ein 32153-Filter über das Originalbild dreimal in herkömmlichen Varianten abtastet. Variationen des hier beschriebenen Mittel-Glättungsfilters umfassen Threshold-Averaging Wird die Glättung unter der Bedingung angewendet, daß der mittlere Pixelwert nur geändert wird, wenn die Differenz zwischen seinem ursprünglichen Wert und dem Mittelwert größer als ein voreingestellter Schwellenwert ist. Dies bewirkt, dass das Rauschen mit einem weniger dramatischen Verlust an Bilddetails geglättet wird. Andere Faltungsfilter, die nicht den Mittelwert einer Nachbarschaft berechnen, werden oft auch zum Glätten verwendet. Einer der häufigsten ist der Gaußsche Glättungsfilter. Interaktive Experimente Sie können interaktiv mit diesem Operator experimentieren, indem Sie hier klicken. Das mittlere Filter wird unter Verwendung einer Faltung berechnet. Können Sie sich vorstellen, wie die speziellen Eigenschaften des mittleren Filterkerns genutzt werden können, um die Faltung zu beschleunigen? Was ist die Rechenkomplexität dieser schnelleren Faltung Verwenden Sie einen Kantendetektor auf dem Bild und notieren Sie die Stärke der Ausgabe. Wenden Sie dann ein 32153-Mittelfilter auf das Originalbild an und führen Sie den Flankendetektor erneut aus. Kommentar zur Differenz. Was passiert, wenn ein 52155- oder ein 72157-Filter verwendet wird Das Anwenden eines 32153-Mittelfilters zweimal erzeugt nicht das gleiche Ergebnis wie ein 52155-Mittelfilter einmal. Es kann jedoch ein Konvolutionskernel 52155 konstruiert werden, der äquivalent ist. Wie sieht dieser Kernel aus? Erstellen Sie einen 72157 Faltungskernel, der eine gleichwertige Wirkung auf drei Pässe mit einem 32153-Mittelfilter hat. Wie denkst du, der mittlere Filter würde mit Gaußschen Rauschen umgehen, das nicht symmetrisch gegen Null war. Versuche einige Beispiele. Referenzen R. Boyle und R. Thomas Computer Vision: Ein erster Kurs. Blackwell Scientific Publications, 1988, S. 32 - 34. E. Davies Machine Vision: Theorie, Algorithmen und Praktiken. Academic Press, 1990, Kap. 3. D. Vernon Machine Vision. Prentice-Halle, 1991, Kap. 4. Lokale Informationen Spezielle Informationen zu diesem Operator finden Sie hier. Weitere allgemeine Hinweise zur lokalen HIPR-Installation finden Sie im Einleitungsbereich Lokale Informationen.


No comments:

Post a Comment